
118 

Acta Cryst. (1992). B48, 118-122 

Intrinsic Chaotization Model for a Perovskite KMnF3 Crystal 

BY ALICJA RATUSZNA AND ADAM KACHEL 

Institute of  Physics, Silesian University, 4 Uniwersytecka Str., 40-007 Katowice, Poland 

(Received 29 January 1991; accepted 23 October 1991) 

Abstract 

The intrinsic chaotization model proposed by 
Kassan-Ogly & Naish [Acta Cryst. (1986), B42, 297- 
335] is used to describe the temperature evolution of 
the KMnF3 crystal structure. This is an example of a 
crystal in which there are two structural phase transi- 
tions: cubic---- tetragonal (TI = 186 K) and tetragonal 
- ,or thorhombic (with monoclinic distortion of the 
pseudocubic cell, 7"2 = 91 K). For each phase the 
parameters defined in the model were calculated, i.e. 
'order parameter' r/`', mean energy E, tilting angle of 
the octahedra tO,, and lattice parameters a`'. These 
last values were compared with experimentally 
determined parameters ap, bp, cp with a relative 
deviation of about 5 x 10-5 in the high-temperature 
region, 5 x 10 -4 for a and b and 1.7 × 10 -3 for c at 
140 K, and 2.5 × 10 -3 at 10 K. 

Introduction 

Kassan-Ogly & Naish (1986) proposed a pheno- 
menological model to describe and elucidate the 
mechanism and occurrence of structural deforma- 
tions in ionic crystals of the perovskite type. Geo- 
metric conditions such as the dimensions of ions 
forming the crystal determine the formation of one 
of two crystal types called shifting and tilting types. 
These types are determined by the loose packing of 
ions in the lattice at high temperatures, a state called 
'immanent chaotization' by the authors. Interactions 
between the ions, which shift them from the equilib- 
rium positions by a value d~ (a = x ,  y, z) are 
described by a Hamiltonian of the Ising type (Ising, 
1925; Landau & Lifshitz, 1964; Reiff, 1965; Stanley, 
1971). Kassan-Ogly & Naish (1986) postulated an 
'order parameter', r/`', which describes the evolution 
of the crystals with temperature. 

With decreasing temperature the 'chaotic' inter- 
actions between ions are replaced by correlated inter- 
actions due to the ions approaching each other more 
closely. In systems of the shifting type, which allow 
displacement of cations within the anionic octahedra, 
a correlated displacement of anion-cation-anion 
chains takes place. In tilting types of crystals the 
strongest correlation is found in the planes between 
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anions forming MnF6 octahedra. A detailed descrip- 
tion of the structure of both types of crystals 
together with considerations of the degrees of 
freedom and correlated interactions may be found in 
the paper by Kassan-Ogly & Naish (1986). 

In the following section the most important 
assumptions are given together with definitions of 
the parameters of the model. It is followed by an 
attempt to apply this model to the temperature 
evolution of the perovskite structure of a KMnF3 
crystal. KMnF3 is one of the most investigated 
crystals (Beckman & Knox, 1961; Knox, 1961; 
Okazaki & Suemune, 1961; Bernard & Walker, 1976; 
Hidaka, 1975; Shirane, Minkiewicz & Linz, 1970; 
Hidaka, Fujii & Maeda, 1986; Lockwood & Torri, 
1974; Hidaka, Ohama, Okazaki, Sakashita & 
Yamakawa, 1975; Minkiewicz & Shirane, 1969; 
Minkiewicz, Fujii & Yamada, 1970; Reshchikova, 
Zinienko & Aleksandrov, 1969; Sakashita & Ohama, 
1982; Gibaud, Cowley & Nouet, 1989; Cox, 1989) 
and was chosen as an example for this reason. It 
belongs to the tilting-ion type forming MnF6 octa- 
hedra which can be freely displaced in the plane (of 
the face) in which they lie. They are closely bonded 
to Mn 2+ forming rigid octahedra. Displacements of 
fluoride ions in the plane perpendicular to the axis 
of rotation of the octahedra with which these 
displacements are correlated, are responsible for 
distortion of the elementary cells with decreasing 
temperature. 

In KMnF3 two structural phase transitions may be 
observed: to the tetragonal system at T1 = 186.5 K 
and to the orthorhombic system at T2 = 91 K, which 
are the result of freezing of the ion displacements. 

Based on the Kassan-Ogly & Naish formalism, 
calculations were made of such quantities as the 
order parameter r/,, and energy E of the system as a 
function of temperature. The temperature depend- 
ences of lattice parameters a`', displacements of 
fluoride ions from the equilibrium position A`', and 
angles of tilting of the octahedra to`" can be calcu- 
lated from the order parameters. These values were 
calculated for KMnF3 from the experimentally 
determined phase-transition temperatures T~ and 7"2. 
Temperature variations of lattice parameters (and 
types of structural distortion) were also determined 
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experimentally and compared with the a,, value cal- 
culated from the model. 

Principal assumptions of the Kassan-Ogly & Naish 
model 

A detailed description of this model was given in the 
paper by Kassan-Ogly & Naish (1986). Only the 
principal assumptions and definitions of model 
parameters for-perovskite crystals of the tilting type 
are given here. It is assumed that: 

(a) The Mn 2+ ions are immobile inside the octahe- 
dra, the fluoride ions which form the octahedra have 
two degrees of freedom in the plane perpendicular to 
the M n 2 + - - F  - bonds, while the potassium cations 
located in the vacancies between the octahedra have 
three degrees of freedom and their noncorrelated 
displacements do not play any significant part in the 
context of this model. Thus, the influence of their 
motion on the changes of the phase-transition tem- 
perature is not considered here. 

(b) A potential V is defined, which describes only 
the interactions between neighbouring planes formed 
by the fluoride ions. Use is also frequently made 
of the interaction parameter J,~ defined as J,~ = 
V ( A , ~ ) 2 / k T .  

(c) It is postulated that a system of this kind may 
be described by an Ising-type Hamiltonian 

I 2 ot ot H ~  = - ~ V ( A ~ )  E , 2 , , 6 , 6 , ,  (1) 

where n and n' enumerate the neighbouring fluoride 
planes, and 6~ is the Ising operator with eigenvalue 
_ 1, indicating fluoride-ion displacement from the 
equilibrium position in the direction a = x, y, z. The 
total Hamiltonian is H = Z~H,~. 

(d) The energy of the system is defined as 

E =  E,~E,~ = - VZ,~(A,,)2~7~ (2) 

where ~ ' l a = ( 6 )  2. The order parameter may be 
derived from the Ising model, i .e .  (6) = tanhJ(6), and 
in the high-temperature cubic phase this parameter is 
taken as having a zero value. In the case of the 
Kassan-Ogly & Naish model the 'order parameter '  is 
defined as 

r/,~ = tanh(J,~) = tanh V(Aa)2 
k r  (3) 

which differs from zero in the cubic phase. The 
model assumes that lattice parameters vary with 
temperature as follows 

ax  = ap = ao(1 - t'r/y)(1 - t'r/~) 

ay = bp = ao(1 - t ' r l x ) ( 1  - t" r h )  

az  = Cp = ao(1 - t'r/x)(1 - t'r/y) (4) 

where ao is the lattice constant in the cubic system 
(high symmetry), t '  a parameter associated with the 
packing of ions in the high-symmetry phase (t '  < 1). 

In a similar manner it is possible to determine the 
temperature dependence of ion displacement from 
the equilibrium position A,, 

A x  = A (  1 - l f i x ) (1  - t ~T y)(1 - t ~l ~) 

A y  = A ( 1  - t rl x ) (  1 - I f l y ) (  1 - t ~7 z) 

A z  = A(1 - tr/x)(1 - t n y ) ( 1  - l n z )  (5 )  

where A is the amplitude of the fluoride-ion oscil- 
lation at T = ~ (in the cubic phase). The meaning of 
parameters t and I is the same as previously. 

For parameters A defined in this way, equations 
(3) may now be written explicitly, i .e .  

~Tx = t a n h [ ( T o / T ) ( 1  - l~Tx)(1 - t ny)(1 - tn~)] 

ny = tanh[(To/T)(l - tnA(1 - / n y ) ( 1  - t~z)] 

n z  = t a n h [ ( T o / T ) ( 1  - tnx)(1 - tny)(1 - / n ~ ) ]  (6) 

where To = ([ V I / k ) d  2, resulting in an expression for 
the energy of the system 

E = - VZa(A,~)2r/~ 

= _ V[nx(ax)  ~ + n,,(/t~)~ + nz(,a~) ~ 

= _ V A 2 [ r l x ( 1  - / r / x ) 2 ( 1  - taTy)2(1 - tr/~) 2 

+ 'qy(1 - tr/x)2(1 -/'qy)2(1 - t'q~) 2 

+ r/z(1 - tr/x)2(1 - tr&)2(1 - lr/z)2]. (7) 

The temperature dependence of tilting angles of 
the octahedra 0,, may also be easily found, i .e .  

0x = tan-  I (2 r l x A x / b )  

0y = tan-l(2rlyAy/C) 

Oz = t a n - l ( 2 r h d J a ) .  (8) 

Structural distortion in KMnF3- experimental data 

The distortion of the KMnF3 unit cell was deter- 
mined from measurements of the lattice parameters 
as a function of temperature. Experiments were per- 
formed on an X-ray powder diffractometer.* Dis- 
placement and splitting of the chosen diffraction 
lines {200}, {211} and { 2 2 2 }  were observed in the 
temperature range 4.2 to 300 K. Lines were meas- 
ured by profile scanning and subsequent fitting to a 
Pearson VII type function as described in the paper 
by Ratuszna & Majewska (1990). Fig. 1 shows the 
experimental plots of lattice parameters as a function 
of temperature (Ratuszna & Glazer, 1988; Ratuszna 
& Majewska, 1990). 

At high temperature KMnF3 crystallizes in a cubic 
system forming an 'ideal' perovskite structure. With 

* Powder diffraction data at 297 K have been deposited with 
the British Library Document Supply Centre as Supplementary 
Publication No. SUP 54666 (3 pp.). Copies may be obtained 
through The Technical Editor, International Union of Crystallog- 
raphy, 5 Abbey Square, Chester CHI 2HU, England. 
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decreasing temperature, deformation of this cell may 
be observed due to the freezing of the fluoride-ion 
oscillations to one plane only, perpendicular to z. 
According to Kassan-Ogly & Naish (1986), this is 
associated with the occurrence of spontaneous z- 
tilting of the MnF6 octahedra. The system trans- 
forms to the tetragonal phase at T] = 186.5 K; the 
cubic cell is deformed to ap = bp = ao(1 - t '*/z) and Cp 
- -ao .  The real unit cell has doubled lattice param- 
eters, which are associated with the tilting of the 
octahedra of type a°a°c - (the symbol a ° means there 
is zero tilt about the [100] and [010] pseudocubic axis 
and c-  indicates successive octahedra along the [001] 
axis have the opposite tilt of magnitude ~G). A more 
detailed description of the tilted octahedra in 
perovskite can be found in the original paper by 
Glazer (1972). The space group describing this sym- 
metry is I 4 / m m r n .  The doubled lattice parameters are 
confirmed by the appearance of additional lines on 
the powder diffraction diagrams (superstructure lines 
of half indices). 

The next phase transition, at T2--91 K, causes 
deformation of the cell to monoclinic, which this 
time is associated with the appearance of spon- 
taneous x-tilting and y-tilting of the octahedra about 
the pseudocubic axis. The unit cell is orthorhombic 
and contains four deformed monoclinic pseudocubic 
subcells; the space group is P n m a .  

According to the notation of Glazer (1972), defor- 
mations in the KMnF3 crystal are the result of 
freezing of rotations of the MnF6 octahedra in the 
sequence: 

a°a°a ° 186.5 K a°a°c - 91 K a - b + a  - 
Cubic > Tetragonal ) Monoclinic 

89.0 t 
C~3 I monoclinic 

u~ 

o 

~..~90 

N 

tetragOnal cubic 

ap 

apn 

a 0 ~c=IB6K 
~c'91K 

i I i I i i a i i i i ~ . ~ _  

20 60 100 140 180 220 260 
temperature (K] 

Fig. l. Experimentally determined temperature dependences of 
lattice parameters for a KMnF3 crystal. Parameters ap, bp, cp 
describe the deformation of the perovskite cell. In the tetragonal 
phase the real cell has dimensions 2ap x 2ap x 2cp, and in the 
orthorhombic phase 2apcos/3/2 x 2bp x 2apsinfl/2 (the bars 
indicate values of  Aa). T,c and T2c are the temperatures of the 
structural phase transitions (subscript c indicates that T was 
determined during the cooling process). 

The lattice parameters ap, bp, el, mentioned in the 
text and shown in Fig. 1 refer to the pseudocubic 
cell. For this reason we use the name distortion or 
deformation of the lattice to mean the distortion 
undergone by the initial cubic cell due to tilting of 
the fluoride-ion octahedra. 

Intrinsic chaotization model in KMnF3- 
calculation of model parameters 

The temperature dependence of the lattice param- 
eters, temperatures of structural phase transitions 
and types of distortion occurring for KMnF3 are 
shown in Fig. 1. Based on these experimental data, 
an attempt was made to calculate the order param- 
eter according to equation (6). Assuming that */~, = 
*/y = */z = */], for the cubic phase a symmetrical solu- 
tion was obtained 

*/, = tanh[(To/T)(1 - l*/,)2(1 - t*/,) 4] (9) 

and associated with this solution, the energy describ- 
ing the cubic system crystal 

E] = - 3 VzI*/I(1 -/*/])2 (1 - t*/04. (10) 

For the tetragonal phase, for which */x = */.,. = */2, */~ 
/ 

= */2, two equations were obtained 

*/2 = tanh[(To/T)(1 -/*/2)2(1 - t*/2)2(1 - t*/~) 2] 

*/~= tanh[(To/T)(1 - l*/~)2(1 - t*/2) 4] (11) 

corresponding to an energy 

E2 = - VZI(1 -/*/92(1 - t * /~ )4 . /2 -  2VZI(1 - l*/~) 2 

× (1 - t*/~)2(1 - t*/2)2./~. (12) 

For the monoclinic distortion, in which the pseudo- 
cubic cell has lattice parameters: ap = %, bp = apsinfl 
and/3 = 90 °, the order parameters fulfil the equality: 
*/x-- */y = */z. For this reason from the possible solu- 
tions listed in Kassan-Ogly & Naish (1986), the 
symmetrical solutions which exist over the whole 
temperature region were chosen. Fig. 2 shows the 
calculated symmetrical and tetragonal numerical 
solutions for KMnF3. 

The symmetrical solution was assumed for the 
cubic phase (7"1 > 186.5 K) and also for tempera- 
tures below 7"2 = 91 K where monoclinic distortions 
had already been observed. The tetragonal solution 
describes the interval 91 < T <  186.5 K, where 
tetragonal deformation was observed. The param- 
eters t, l and To, appearing in equation (6), were 
fitted and their values are given in Table 1. Fig. 2 
shows their temperature dependence. For calculated 
values */, the energy of the system was determined 
from equations (10) and (12). 

The model envisages temperature variations of the 
lattice parameters [equation (4)] modulated by 
changes in the order parameters. These values of the 
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Table 1. Model parameters obtained from fitting 
procedure 

Crystal t l t' To (K) 
KMnF3 0.673 (2) 0.09 (12) 0.002 (6) 4000 

lattice parameters are compared in Fig. 3 with values 
determined directly from X-ray diffraction measure- 
ments. 

The angles ff,~, i.e. the tilting of the MnF6 octa- 
hedra as calculated from equation (8), are shown in 
Fig. 4. As a consequence of the non-zero order 
parameter r/,~ = tanhJ~ in the cubic phase, the tilting 
angles are also non-zero in this phase. For this 
reason Kassan-Ogly & Naish (1986) propose the 
name pseudocubic for the high-temperature phase, 
and similarly, we use the name pseudotetragonal for 
the tetragonal phase where fix = ~y ~ 0. 

Discussion 

The present paper attempts to apply the Kassan- 
Ogly & Naish (1986) model to a description of the 
temperature evolution of the structure in an ionic 

1.0 

0.9 

0.B 

1 3 -  

~, 0.7 T2_ ~ r L z  

o rt×=qy IT I 
0.6 . . . . . .  

0 50 100 150 200 250 300 

temperature EK] 
Fig. 2. Temperature dependence of the order parameters 

determined from the model [equations (3) and (10)]; T~ and /'2 
correspond to the temperatures of structural phase transitions. 

perovskite crystal of the tilting type with intrinsic 
chaotization. The cause of this chaos is the loose 
packing of ions in the crystal, making displacement 
from the equilibrium position possible (by a value of 
A )  without destroying the symmetry at high 
temperatures. With decreasing temperature the inter- 
atomic distances also decrease and strong inter- 
actions appear between the oscillating ions. 

In crystals of the tilting type a strong correlation 
may be observed between vibrations of fluorine ions 
in a plane, which may be associated with rotation of 
the MnF6 octahedra. Freezing the fluoride-ion dis- 
placements in the planes is equivalent to freezing the 
tilting of the octahedra which is responsible for 
deformation of the elementary cell. 

Temperature plots calculated from the model for 
values such as the order parameter, the energy of the 
system or tilting angles of the octahedra would 
appear to be correct. Nevertheless, it is not possible 
to measure any of these values directly (even the ~ 
angles are functions of the lattice parameters), hence 
no comparisons are made between the model and 
experimental values. The lattice parameters are the 
only values which can be determined directly from 
X-ray measurements and therefore only this com- 
parison has been made here. It has not been possible 
to obtain quantitative agreement throughout the 
whole temperature range by fitting parameters t, l, t '  
and To, but qualitatively these variations are 
described quite satisfactorily. The model confirms 
the existence of the tetragonal and monoclinic 
(symmetrical) distortion, since the appropriate ener- 
gies E, and E2 associated with solutions for the given 
symmetry reach a minimum in the regions where the 
given phase occurs. 

The object of this investigation was not to defend 
the Kassan-Ogly & Naish model but to demonstrate 
that, despite the inadequacies of its assumptions 
(widely discussed by the authors themselves), this 
model provides the means by which a system may be 

4,.200 

*< 4~90 
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4~80 

4160 

• • e 
. 

o° " - / l  "~'~" h 

, | , 

o 1oo ,oo 

temperature I'K] 
Fig. 3. Temperature variations of the lattice parameters calculated 

from the model [equation (4)] shown by the continuous line. 
Filled circles indicate experimental data (from Fig. 1). 
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._ 3 °  
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temperature [ K] 
Fig. 4. Angles of tilting of the octahedra as functions of 

temperature calculated from the model [equation (8)]. 
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described with a relatively simple initial structure in 
which, due to packing of the ions and the stresses 
resulting from this, a great number of structural 
deformations occur. 

The authors wish to thank Professor R. Maflka 
for discussions and valuable comments during the 
preparation of the manuscript. 
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Abstract 

The incommensurately modulated structure in single 
crystals of nominal composition Bi2Sr2CaCu208 has 
been solved with the aid of four-dimensional crystal- 
lography. 700 unique X-ray reflections were col- 
lected, including 265 fundamentals, 350 first-order 
and 85 second-order satellites. The overall weighted 
R factor (wR) is 0.073, while the partial wR values 
for fundamentals and first- and second-order satel- 
lites are 0.066, 0.086 and 0.133 respectively. Up to 
second-order harmonics were included in the modu- 
lation function along with the temperature factors, 
Bo.. In addition, Ca is partially replaced by Sr and Bi, 
and Sr sites have some vacancies; Bi has a large first- 
and second-order modulation of the B factor, which 
suggests a static disorder in the Bi sites; and the 
CuO2 planes suffer a measurable modulation of their 
average structure. These findings are in fair 
agreement with earlier results by Petricek, GaD, Lee 
& Coppens [Phys. Rev. B (1990), 42, 387-392]. How- 

ever, our moduation amplitudes are in significant 
disagreement. A small c-axis component to the 
modulation wavevector was observed along with 
substantial disorder in the interplanar phasing of the 
modulation waves. Diffuse scattering at 'unallowed' 
Bragg positions was also measured. 

Introduction 

Following the observation of superconductivity at 
20 K by Michel, Hervieu, Borel, Grandin, Deslandes, 
Provost & Raveau (1987) for the BiSrCuO system, 
the addition of Ca to this ternary system led Maeda, 
Tanaka, Fukutomi & Asano (1988) to the discovery 
of bulk superconductivity at 85 K and evidence of 
superconductivity at l l 0 K  in the BiSrCaCuO 
system. The compound with a formal composition of 
Bi2Sr2CaCu208+x (hereafter denoted Bi2212) was 
found to be responsible for superconductivity at 
85 K in the Bi system and its basic structure was 
soon established (Tarascon, Le Page, Barboux, 
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